
Safe and enjoyable routes for motor-
cycle riders, with dynamic
hazard warnings
Using graph algorithms and deep learning

Master’s thesis in Computer science and engineering

Andreas Carlsson, Jonathan Krän

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Safe and enjoyable routes for motor-
cycle riders, with dynamic

hazard warnings

Using graph algorithms and deep learning

ANDREAS CARLSSON, JONATHAN KRÄN

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2020

Supervisor: Stefan Candefjord, Department of Electrical Engineering
Advisor: Niklas Ohlsson, Detecht Technologies AB
Examiner: Bengt Arne Sjöqvist, Department of Electrical Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A gravel road in Dalsland, Sweden. Photo by Andreas Carlsson.

Gothenburg, Sweden 2020

iv

Abstract
Motorbike riders who drive for recreational purposes often seek routes that are op-
timized for other purposes than the common factors of the length of the route and
the time it takes to ride it. The primary aim of this study was to find what such
factors could be and to design a routing system that takes these factors into account.

A survey was conducted which showed that curvature and the surrounding scenery
of a route are two such factors that are important for this type of motorbike riders.
The curvature of the road was calculated by using circumscribed circles to deter-
mine the curvature of road segments. Scenery images were sourced from the Google
Static Street View API and classified using transfer learning on a pre-trained model
of the convolutional neural network ResNet-50.

Seven routing profiles were developed which use a combination of the curvature and
scenery data in different ways, for instance by preferring high curvature and scenery
that contains water. Each routing profile required the creation of a pre-processed
graph and was static in the sense that parameter changes could not be made with-
out additional pre-processing. The routing was performed using the GraphHopper
routing engine and OpenStreetMap was the source of all geographical data.

The secondary aim was to explore methods of increasing road safety for this type
of motorbike rider. A dynamic warning concept was proposed that can warn the
user of potentially dangerous upcoming road sections, such as sharp curves and road
works.

The routing system is capable of suggesting routes in Sweden in near real time
(less than 50 ms) based on road curvature and surrounding scenery. We conducted
a qualitative evaluation, consisting of six deep interviews, of the routing system
and the dynamic warning concept. The findings from these interviews suggest that
our routing system performs worse than implementations by competitors regarding
curvature. However, our system has the advantage of also considering surrounding
scenery. The interviewees were mostly positive towards the dynamic warning con-
cept.

The two main ways to improve the routing system appear to be to further increase
the preference of curvature when routing and to use more images of surrounding
scenery.

In conclusion, this thesis shows that there is promise in using curvature and scenery
for routing systems that target motorbike riders who drive for recreational purposes.
Additionally, initial results show that dynamic warnings could provide a safer mo-
torbiking experience if implemented in an appropriate way.

Keywords: preference-based routing, curvature, road scenery, routing problem, path
finding, road safety, motorbiking.

v

Acknowledgements
We would like to thank our supervisor Stefan Candefjord for his continued support
and commitment throughout the project. We want to express our gratitude to Võ
Thi. Ngo.c Mỹ and Tuyen Ngo for their moral support and encouragement. Addition-
ally we thank Niklas Ohlsson and Tobias Goldman, founders of Detecht Technologies
AB, for their valuable input during the project. Finally, we would like to give extra
thanks to Tuyen Ngo for her guidance and help with the illustrations in the report.

Andreas Carlsson and Jonathan Krän, Gothenburg, June 2020

vii

Contents

List of Figures xi

1 Introduction 5
1.1 Background . 5
1.2 Related work . 7

1.2.1 Commercial alternatives on the market 7
1.3 Aim . 9
1.4 Scope . 9

2 Theory 11
2.1 OpenStreetMap graph structure . 11
2.2 Routing in graphs . 12

2.2.1 A* . 12
2.3 Haversine distance . 12
2.4 Determining road curvature . 12

2.4.1 Bee-line distance to actual distance ratio 12
2.4.2 Circumscribed circles . 13

2.5 Contraction Hierarchies . 14
2.6 Nearby point search (R-Tree) . 15
2.7 Scenery . 16
2.8 Machine learning for scenery classification 17

2.8.1 Convolutional Neural Networks 17
2.8.1.1 ResNet-50 . 18
2.8.1.2 ImageNet . 18

2.8.2 Transfer learning . 18
2.8.3 Inter-rater reliability . 18

3 Methods 21
3.1 User survey . 21

3.1.1 Constructing the survey . 21
3.1.2 Analyzing the results . 22

3.2 Scenery classification . 24
3.2.1 Selecting coordinates for scenery image sampling 24
3.2.2 Collecting additional data for under-represented categories . . 31
3.2.3 Direction and field of view . 31
3.2.4 Classifying imagery . 33

ix

Contents

3.2.5 Obtaining and categorizing training data 34
3.2.6 Training the network . 35

3.3 Incorporating scenery and curvature data 38
3.3.1 Adding curvature to the OSM data 38
3.3.2 Adding scenery to the OSM data 39

3.4 Routing . 40
3.4.1 Choice of routing engine . 40
3.4.2 Route weighting function . 41
3.4.3 Routing profiles . 41

3.5 Safety aspects . 42
3.5.1 Curvature warnings . 43
3.5.2 Nearby road works . 45

4 Results 47
4.1 Scenery image classification . 47

4.1.1 Agreement between the labellers 47
4.1.2 Size of training set . 47

4.2 Routing . 49
4.2.1 Comparing different level of curvature 49
4.2.2 Comparison to other routing services 51

4.2.2.1 Calimoto comparison 51
4.2.2.2 Kurviger curvature comparison 53

4.3 User evaluation of routes . 54
4.4 User evaluation of warnings . 55

5 Discussion 57
5.1 Image labelling . 58
5.2 Limitations . 59

5.2.1 Geographical area . 59
5.2.2 Scenery classification . 59
5.2.3 Curve warnings algorithm . 59

6 Conclusion 61

7 Future work 63

Bibliography 65

x

List of Figures

1.1 The interface of the respective trip planners in the comparison. 8
1.2 The ranking of curvature for a specific route. 8

2.1 The blue circles represent tower nodes and the small black circles
represent pillar nodes. Tower nodes correspond to junctions and the
end of a one-way streets. Pillar nodes correspond to positions along
roads (they define road segments). 11

2.2 The problem that arises when using bee-line to actual distance ratio
for determining curvature. 13

2.3 Circumscribed circles in road segments 14
2.4 Examples of scenery images along different routes. Images © Google

2020. 16
2.5 Simplified illustration of the convolutional neural network architec-

ture used in this thesis. Street View image © Google 2020. 18

3.1 Curvature and scenery turned out to be the two most important fac-
tors according the respondents of the survey. 22

3.2 To find out the respondents’ preferences, they were asked to give a
rating between 1 and 4 for nine different statements. 1 stands for
"disagree" and 4 stands for "totally agree". 23

3.3 Examples of images for the chosen categories: forest, field, water and
urban. Images © Google 2020. 24

3.4 The problem in which many more nodes are sampled in areas like
cities than elsewhere. Each black dot corresponds to one sample.
Map © Mapbox 2020 and © OpenStreetMap 2020. 26

3.5 The grid overlay with a side length of 0.05 in latitude and 0.05 in
longitude. The main purpose of using a this approach is to prevent the
algorithm from choosing nodes that are too close together in a dense
area, for example a city. Map © Mapbox 2020 and © OpenStreetMap
2020. 27

3.6 Sampled points by using the grid sampling method. Maps © Mapbox
2020 and © OpenStreetMap 2020. 28

3.7 Splitting the map into grid sections caused problems in some areas.
For example, areas that contained coast line would see a large amount
of samples in a small area because most of the grid area is water. Map
© Mapbox 2020 and © OpenStreetMap 2020. 28

xi

List of Figures

3.8 pprox2: The probability of sampling a node increases with the distance
to the last node. 30

3.9 An example of what the final sampling method produced. Each black
dot corresponds to one sample. Map © Mapbox 2020 and © Open-
StreetMap 2020. 30

3.10 Areas with lots of water no longer contained too many samples (each
black dot corresponds to one sample). Map © Mapbox 2020 and ©
OpenStreetMap 2020. 31

3.11 Images are fetched to the left and to the right of the driving direction.
Images © Google 2020, map © Mapbox 2020 and © OpenStreetMap
2020. 32

3.12 Images that were sampled from the water node data-set had their
direction pointed towards the water node in order to capture more
water. Images © Google 2020, map © Mapbox 2020 and © Open-
StreetMap 2020. 32

3.13 The frontend for image classification. The highest allowed speed is
shown in the top left corner of the image. To the right of the image
the labeller is able to select one of five categories. Image © Google
2020. 35

3.14 Transformations are applied to images in the training set in order to
make the network generalize better. Images © Google 2020. 36

3.15 Loss curves of the model for image classification. 37
3.16 Accuracy curves of the model for image classification. 37
3.17 Locations with scenery data. Green points correspond to forest, yel-

low points to field, blue points to water and grey points to urban.
The rightmost image shows a zoomed-in view of the scenery locations
around Gothenburg. Maps © Mapbox 2020 and © OpenStreetMap
2020. 40

3.18 Example of curvature warning in the app. The box in the upper left
corner of the map shows the values that the danger-value is based
on, together with the current speed. These values are not intended
to be shown to the end user but are only used for reference during
development. The screenshots show three different levels of danger;
low, medium and high. These danger levels are represented as green,
yellow and red in the bar on the right-hand side. The height of the
bar also indicates the current amount of danger as described earlier.
Maps © Mapbox 2020 and © OpenStreetMap 2020. 44

3.19 A prototype of road warnings. Only warnings in close proximity to
the route are shown. Details are shown when the user taps a warning
symbol. Map © Mapbox 2020 and © OpenStreetMap 2020, Icons ©
Icons8 https://icons8.com/. 45

4.1 Performance of the network when using data sets of varying size. . . . 48

xii

List of Figures

4.2 Different routes from Gothenburg to Stockholm, each route created
using one of the curvature routing profiles. The orange line in each
figure corresponds to the curvy route, and the gray line corresponds
to the fastest route. Maps © Mapbox 2020 and © OpenStreetMap 2020. 50

4.3 Our curvature routes compared to the route generated by Calimoto,
between Halmstad and Uppsala. The orange line corresponds the
route generated by our algorithm and the gray line is the route gen-
erated by Calimoto. Maps © Mapbox 2020 and © OpenStreetMap
2020. 52

4.4 A route from Gothenburg to Stockholm, calculated using four differ-
ent routing profiles. Maps © Mapbox 2020 and © OpenStreetMap
2020. 53

5.1 Examples of images that are easy to classify. Images © Google 2020. . 58
5.2 Examples of images that are difficult to classify. Images © Google 2020. 58

xiii

List of Figures

xiv

Glossary

Accuracy – Number of correct predictions divided by the number of total predic-
tions made

API - Application Programming Interface

AUC – Area Under the Curve, a metric in machine learning that defines the area
under the ROC curve

Bee-line distance - The straight line distance between two points on a map

Class – The label assigned to an image from the network

CNN – Convolutional Neural Network, a type of neural network suited for im-
age classification.

Confusion matrix – A matrix containing the actual class of an item (rows) and
the class predicted by a machine learning model (columns)

Content tag – A tag assigned to an image that describes the content in a more
detailed way compared to the label

Danger value A value representing the danger of an upcoming coordinate, based
on the curvature of that coordinate, the current speed of the driver and the distance
remaining to that coordinate.

DNN – Deep Neural Network, a neural network with multiple layers between the
input and output layers.

DRL – Deep Residual Learning

GPS – Global Positioning System

Label – The overall content of an image

Labeller – The person assigning a label to an image, setting the ground truth
for that image

Loss – A metric for how well a model is able to classify a data set. Lower is
better.

ML – Machine Learning

Node – A vertex in a graph (given by its longitude and latitude).

1

List of Figures

ODbL – Open Database License

OSM – Open Street Map, a collaborative project aiming to make geographical
data available under an open source licence (ODbL).

ResNet – A CNN model that uses skip-connections.

RNN - Recurrent Neural Network, a class of artificial networks.

ROC – Receiver Operating Characteristic curve

Way - An ordered list of nodes in the Open Street Map data.

WHO – World Health Organization

2

List of Figures

4

1
Introduction

Routing in maps is a thoroughly studied topic with many approaches suggested
for finding optimal routes. Normally, optimality is measured in terms of short
and efficient routes. However, some groups of road users might prefer different
route properties than these. Motorbike riders that drive for recreational purposes
are one such group that might prefer other types of routes, not necessarily the
shortest [1]. We make a distinction between different groups of motorbike riders; in
many countries, the motorcycle is mainly used as a mean of transportation, while
in other countries it is mainly used for recreational purposes. We suspect that this
latter group of motorbike riders are sometimes willing to sacrifice time efficiency for
route quality and enjoyability.

The aim of this thesis is to develop a routing system that uses the preferences of
recreational motorbike riders to recommend enjoyable routes. We hypothesise that
the curvature of the road and its surrounding scenery are two important factors for
how enjoyable a route is perceived to be. Using curvature as a routing parameter has
been done by others, but using the surrounding scenery of the road as a parameter
is a novel approach to the best of our knowledge.

A secondary aim is to provide safety information to riders in the form of dynamic
warnings that can alert the driver as they are driving along a route, for instance
if they are approaching a curve with excessive speed or if there is an ongoing road
work ahead. Warnings like this can be beneficial not only for the driver but also for
other people and vehicles sharing the road. For example, if a driver gets a chance
to slow down before approaching a road work it will also increase the safety for the
people working on the construction site.

1.1 Background
Routing, i.e. path finding, amounts to solving the shortest path problem. The
shortest path problem is to find a path between two vertices in a graph such that
the sum of the weights along its edges are minimized. We will refer to such a path
as an optimal path. In many cases, optimality is defined in terms of the shortest
or fastest route between two vertices. The shortest path problem is a well-studied

5

1. Introduction

problem and there are many proposed algorithms for solving it [2; 3]. The problem
is easy for small graphs, but it quickly becomes a challenging problem in terms of
required time as the graph size increases [4]. One algorithm for solving the shortest
path problem is Dijkstra’s algorithm [2]. It is a well-known algorithm for path
finding, and many later approaches are based on this algorithm.

Algorithms used for finding optimal routes between two locations generally use a
graph representation of the road network. Graphs of the world’s road network are
available online, like those provided by OpenStreetMap and Google Maps. These
graphs are used by services and projects such as GraphHopper and the Open Source
Routing Machine for routing in real road networks. While the default modes of
these projects optimize for short and fast routes, their algorithms can be adapted
to optimize for different criteria instead.

As mentioned earlier, recreational motorbike riders will likely not consider the short-
est route to be the best route. These riders are often less interested in driving the
shortest or fastest route between two locations. Instead, they might want an enjoy-
able route. What makes a route enjoyable depends on several factors and can differ
between riders. It is not clear what optimality of a route means for this group. There
are likely shared preferences though, and curvy routes are generally appreciated [5].
The surrounding scenery is possibly another important factor for how enjoyable a
route is perceived to be.

Riding a motorbike is often considered to be significantly more dangerous than
other means of transportation [6]. There are several reasons for this and while the
behavior of the individual riders can be a significant risk factor [7], the type of road
in question also plays a significant role [8].

Recommending routes that are optimized based on parameters like curvature and
surrounding scenery could affect the safety of an average route. In particular, recom-
mending enjoyable routes could put motorbike riders at greater risk. For example,
assume that motorbike riders are found to enjoy curvy roads. Using curvy roads
as a routing parameter could result in more dangerous roads since up to 17% of all
motorcycle accidents occur while in a curve [9]. It would therefore be important to
warn drivers, for instance by advising them to be extra cautious as they approach
a particularly curvy road segment or an area with ongoing road works.

According to a study from WHO released in 2015 [10], road traffic injuries is the
number one cause of death amongst people aged 15-29 years. Data from the same
report suggests that almost a quarter of all traffic accidents world-wide with a deadly
outcome was with a motorbike. Moreover, motorcycle users are among the more
vulnerable road users [11]. Despite motorcycle users only making up a fraction
of road users, they represent a significant amount of fatal accidents. Song et al.
[11] state that “Although motorcycles made up only 3% of all registered vehicles
in the U.S. in 2012, they accounted for 15% of all traffic fatalities and 18% of
all occupant fatalities”. Motorcycle riders are often not able to perform a crash-

6

1. Introduction

avoidance maneuver in time [12].

1.2 Related work

While there are many other studies on the problem of preference-based routing, the
problem appears to be relatively unexplored for the motorbike rider target group.
Novack et al. [13] present a preference-based routing system with the goal of creating
pleasant routes for pedestrians within a city environment. Parameters for the route
recommendation include occurrence of green areas, social spaces and less trafficked
streets. Routes were created using OpenStreetMap data with a cost function based
on these parameters. In their evaluation, they found that people generally perceived
their routes to be preferable to the shortest route.

On the other hand, real-time routing is a thoroughly explored topic. Luxen and
Vetter [14] explore how data from OpenStreetMap [15] can be used to build a real-
time routing engine. They evaluate the performance on both a computationally
limited handheld device and on a more powerful server and show that it is feasible
to perform offline routing on a handheld device. Their solution for handheld devices
make use of contraction hierarchies and as well as other preprocessing steps to
accomplish real time performance on handheld devices.

There is also some previous work on warning system for motorbike riders. M. Song
et al. [11] tested several different warning interface displays for motorcycle riders.
Auditory, visual and haptic feedback modes were considered. They found that their
test group preferred a combination of auditory and haptic feedback for conveying
warning information. Moreover, they state that auditory feedback is easy to im-
plement but was lacking in terms of conveying directional information. Riders in
their study were able to easily distinguish between handlebar vibration and haptic
warnings from their system.

1.2.1 Commercial alternatives on the market

There are several commercial products for route planning aimed at motorcyclists.
We took a closer look at some of the alternatives. Figure 1.1 shows the graphical
interfaces for these alternatives.

7

1. Introduction

Figure 1.1: The interface of the respective trip planners in the comparison.

Calimoto’s trip planner [16] offers routing with intermediate stops and planning
round trip routes with a given length. An interesting feature of the Calimoto trip
planner is the possibility to set a certain level desired curvature between each inter-
mediate stop. In order to export or save a route the user has to be logged in. An
interesting feature is their connection to weather data where it is possible to display
expected precipitation along the route. Calimoto also gives a ranking for how high
curvature a route has (see Figure 1.2).

Figure 1.2: The ranking of curvature for a specific route.

8

1. Introduction

Kurviger [17] is an online planning tool for finding routes with varying degrees of
curvature. The curvature parameter has three possible values, and it is possible to
include or exclude highways from routing. Kurviger uses GraphHopper [18] for rout-
ing and OpenStreetMap [15] for map data. Routes can be imported and exported in
a variety of formats. One unique part of Kurviger is their choice to display altitudes
along the route. Similarly to Calimoto [16], Kurviger also has an option to search
for round trip routes.

Rever [19] is a venture capital backed startup founded by Justin Bradshaw and
Mark Roebke in 2015. They are based in Eagle, Colorado in the United States.
Their main product is an app in which you can track your routes and they also
offer an online trip planner. Rever’s distinguishing feature is perhaps their focus on
offering vetted roads as part of their paid plans. There are options to avoid tolls
and highways, but no option for finding roads with a certain level of curvature.

Scenic [20] is an iOS-application where it is possible to search route based on how
fast they are to drive, the distance of them or the efficiency. They also include an
option to generate a "curvy route", where the level of curvature can be set to one
of three levels. There are also options to avoid unpaved roads, narrow roads and
avoiding to drive the same road twice. The routing engine makes use of Kurviger’s
[17] algorithm.

1.3 Aim
The main aim of this thesis is to develop a routing algorithm for finding enjoyable
and safe routes for motorbike riders. The routing algorithm should make use of
the curvature of the road and its surrounding scenery. Moreover, the algorithm
should be adaptable to different preferences, such as preferring high curvature or a
particular type of scenery. The use of surrounding scenery for routing is perhaps
the main contribution as it has not been done before to the best of our knowledge.

A secondary aim is to provide additional safety information to motorbike riders.
This will be done by giving dynamic warnings to drivers as they are approaching a
section of the route which might be dangerous.

1.4 Scope
This project only includes and uses data from the geographic area of Sweden (a total
area of around 450 000 km2). However, all approaches can be extended to include a
larger area assuming availability of data.

9

1. Introduction

10

2
Theory

2.1 OpenStreetMap graph structure

A road network can be seen as a graph consisting of edges and vertices. In the
OpenStreetMap graph format, vertices (called nodes) are divided into tower nodes
and pillar nodes (see Figure 2.1). A tower node, also called a junction, has either
one, three, or more outgoing edges. If a tower node has one edge it corresponds to
the end of a one-way-street. The other case, with three or more edges, corresponds
to a junction from which several ways are possible. Pillar nodes are nodes that
hold information about the road between junction nodes. The pillar nodes are not
necessary for routing since they only contain two edges. Assuming we have reached
a pillar node using one of those edges, there is only one remaining edge that can be
traversed. By ignoring pillar nodes when routing, the time it takes to create a route
between two points can be significantly decreased. The main purpose of the pillar
nodes is to correctly map the physical location of a road to its representation in the
graph.

Figure 2.1: The blue circles represent tower nodes and the small black circles
represent pillar nodes. Tower nodes correspond to junctions and the end of a one-
way streets. Pillar nodes correspond to positions along roads (they define road
segments).

11

2. Theory

2.2 Routing in graphs
Routing consists of finding a path in a graph. There are many algorithms for this
problem, two of the most common ones being Dijkstra and A*. The GraphHopper
routing engine has support for both these algorithms, including modifications like
contraction hierarchies (see section 2.5), which can speed them up.

2.2.1 A*
A commonly used algorithm for finding the shortest way between two vertices in a
graph is A* (A star) [21]. It is also often used to find the shortest paths in road
networks [22]. A* is optimal in the sense that it always finds the best solution to the
problem given that the heuristic used when evaluating a path never overestimates
the cost. This is expressed as having a heuristic that is admissible. The heuristic
used in this thesis is the pythagorean distance between two nodes, i.e the bee-line
distance.

2.3 Haversine distance
Calculating the distance between two coordinates is important both when deter-
mining the road curvature (see section 2.4) and when sampling points for scenery
images (see subsection 3.2.1).

The Haversine formula is a formula that can be used to calculate the distance be-
tween two points on a sphere [23]. The distance between two coordinates in latitude
and longitude is given by

d = 2r arcsin

√√√√sin2
(
θ2 − θ1

2

)
+ cos (θ1) cos (θ2) sin2

(
λ2 − λ1

2

)
(2.1)

where r is the radius of the sphere, the first coordinate is (θ1, λ1) and the second
coordinate is (θ2, λ2) (θ is latitude and λ is longitude).

2.4 Determining road curvature
According to our user survey (see section 3.1), road curvature is an important factor
for how enjoyable a route is to motorbike riders. It is not clear how best to measure
road curvature. Two approaches for measuring road curvature are presented here.

2.4.1 Bee-line distance to actual distance ratio
One approach to finding the curvature of a road section is to compare the ratio of the
bee-line distance between two tower nodes with the distance for also visiting each

12

2. Theory

one of the intermediate pillar nodes. The latter one is the actual distance one needs
to go from one tower node to the other. By dividing the actual distance with the
bee-line we get a ratio that we can use as a measurement of curvature. A downside
with this approach is that it does not take the actual curves into consideration.
Figure 2.2 exemplifies this problem. The left and the right road in Figure 2.2 have
the same distance between the nodes A and B, but the road to the right contains
many more curves than the road to the left.

Figure 2.2: The problem that arises when using bee-line to actual distance ratio
for determining curvature.

2.4.2 Circumscribed circles

Another way of calculating curvature is by using circumscribed circles. It differs
from the bee-line approach in that it considers the curvature of segments of three
nodes along the road section. This allows it to correctly solve for the problem in
Figure 2.2.

The circumscribed circle of a triangle is defined as the unique circle that passes
through all three vertices of the triangle [24]. Figure 2.3b illustrates the circum-
scribed circle of a triangle.

13

2. Theory

(a) A triangle with corners in three of the
geographical points along a road. Map ©
Mapbox 2020 and © OpenStreetMap 2020.

(b) A triangle with its corresponding
circumscribed circle.

Figure 2.3: Circumscribed circles in road segments.

To use circumscribed circles for calculating road curvature, we form triangles using
groups of three points along a road segment (see Figure 2.3a). The radius R of the
inscribed circle can be computed by the formula

R = abc

2bc · sin θ = abc√
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

(2.2)

Where a, b and c are the lengths of the sides of the triangle and θ is the inscribed
angle. The radius is used as a measurement of how sharp a certain road section
bends. A large radius indicates a large θ which means that the section is relatively
straight. A small radius means that θ is small and that the road section has a sharp
bend.

2.5 Contraction Hierarchies
Basic path finding techniques such as Dijkstra’s algorithm and A∗ are not fast enough
to provide real-time routing in the original OpenStreetMap road graph of Sweden.
Routing on that graph using these techniques can take seconds even when the ori-
gin and destination points are relatively close to each other. With the origin and
destination being far apart, the routing can take tens of seconds, which is too slow
for practical use. However, the routing speed of these algorithms can be improved
by preprocessing the graph that they use for routing.

Contraction hierarchies is a preprocessing technique that can be used to speed up
shortest path queries in road networks [25]. The technique takes advantage of the
hierarchical nature of road networks. When constructing the contraction hierarchy
(CH) graph GCH, the nodes of the original graph G are ordered by an estimate of the

14

2. Theory

gain that will be had if a node is contracted. Initially, GCH = G. Contraction of a
node means that it is removed from GCH without removing any shortest paths from
GCH that are present in the original graph G. The contraction is done by replacing
paths 〈u, v, w〉 by a new path 〈u,w〉.

When routing, the graph GCH = (V,E) is split into two graphs called the upward
graph G↑ := (V,E↑) with E↑ := {(u, v) ∈ E : u < v} and the downward graph
G↓ := (V,E↓) with E↓ := {(u, v) ∈ E : u > v}. The node comparisons use the node
contraction order. Shortest path queries from s to t consist of running a variant
of bidirectional Dijkstra shortest path search. A forward search is performed in G↑
and a backward search in G↓. If, and only if, there exists a shortest path between s
and t in G, these searches will meet at a node with the highest order of the nodes
present in a shortest path from s to t.

2.6 Nearby point search (R-Tree)
A common problem when dealing with geographical data is searching for nearby
points around a given point. The routing process presented in this thesis requires
n-nearest point queries. It uses this type of query both for interpolating scenery
values and for sampling points for scenery images.

The R-Tree is a data structure commonly used for handling the n-nearest search
problem. The data structure is a height-balanced tree whose leaf nodes contain
pointers to objects. Its structure makes efficient spatial search possible. [26].

15

2. Theory

2.7 Scenery

We hypothesize that the surrounding scenery of a route can be used as a factor for
determining how enjoyable and safe the route is. For example, a road surrounded
by dense forest can be more dangerous to ride compared to a road surrounded by
open fields. Figure 2.4 shows some example images of the scenery around roads.

(a) Example of scenery (b) Example of scenery

(c) Example of scenery (d) Example of scenery

Figure 2.4: Examples of scenery images along different routes. Images © Google 2020.

16

2. Theory

2.8 Machine learning for scenery classification

The routing algorithm needs sceneries as numerical values. Therefore, the scenery
images have to be transformed from images to some numerical representation. This
transformation can be performed using machine learning techniques [27].

2.8.1 Convolutional Neural Networks

A convolutional neural network (CNN) is a class of deep neural networks that makes
use of convolutions as input to the neural network. In the context of deep machine
learning, a convolutional layer is a set of filters, or kernels, that perform a set of
operations on the input data and and produce an output in the shape of a vector.
A kernel in a convolutional layer is a matrix of scalars that are multiplied with the
input vector. One classic example of a kernel is one that triggers on contours in an
image [28]. Figure 2.5 shows the basic architecture of a CNN.

These kinds of networks are particularly useful when the input data has a spatial
relationship. Images contain this kind of spatial structure; when dealing with images,
it is generally beneficial to use a method that does not treat pixels that are distanced
in the same way as pixels that are close to each other. CNN’s has proved to work
very well for this specific task [29]. The convolutional layers will provide feature
extraction (thus treating pixels that are close together differently from pixels that
are far apart) that can be used as input to the fully connected layers.

The input data generally passes through a number of convolutional layers, and
are then flattened to a one-dimensional vector before being fed to a set of fully
connected layers. These fully connected layers are then trained using stochastic
gradient descent. There exists several methods for doing this learning [30]. In this
thesis we make use of a the Adam optimizing algorithm, which is an extension to
stochastic gradient with adaptable learning rate [31].

The last layer of the network is a so called softmax layer [32] that transforms the
score of each class to a probability between 0 and 1. The softmax function takes
zk, k = 1...K as input and gives calculates to probability σ for a given class c as

σ(zc) = ezc∑K
i=1 e

zi
(2.3)

17

2. Theory

Figure 2.5: Simplified illustration of the convolutional neural network architecture
used in this thesis. Street View image © Google 2020.

2.8.1.1 ResNet-50

ResNet50 [33] is a 50 layers deep convolutional network that is commonly used for
image recognition. The network uses residual learning which is a technique that
makes it easier to train deeper networks. The technique is implemented using skip
connections which allows the network to skip certain layers. This skipping over
layers also helps mitigate the problem of vanishing gradients, thus making it easier
to train the network [33].

2.8.1.2 ImageNet

When training a neural network, a large amount of training data is generally needed
in order to reach satisfying performance. An image data set commonly used for
training networks is ImageNet, which is an open data set [34] consisting of over 14
million images. The ResNet50 network used in this thesis was pretrained on a subset
of the ImageNet data set where its images had been divided into 1000 categories.

2.8.2 Transfer learning
ResNet50 is the neural network used in this thesis to classify scenery images. This
neural network has over 23 million trainable parameters. Training all of these from
a random initialization would require extensive computing power and a large set of
training data. To avoid having to retrain the whole network, one can make use of
transfer learning. Transfer learning is an area in machine learning where knowledge
gained on one problem set is adapted for use on a different set of data that is similar
to the original data. It is useful when training a model from scratch is infeasible,
either due to computational restraints or due to lack of training data. In this thesis,
both of these constraints are applicable (see section 5.2). In transfer learning, the
weights of every layer except the last few ones are frozen. Their weights are left
unchanged, and training occurs only on the last few layers that are not frozen.

2.8.3 Inter-rater reliability
Training a neural network requires labelled data. Such labelling tasks often benefit
from having several people label the same data set [35]. There are several reasons

18

2. Theory

for this. For instance, two people might perceive one image in different ways de-
pending on their background. It is also probable that mistakes are made during the
classification process. As such, the classification results can likely be improved by
combining the classifications of several people. One approach for determining the
degree of agreement of the classifications is Krippendorff’s alpha [36]. This met-
ric gives an indication on the level of agreement as α ∈ [0, 1], where a higher α
corresponds to a higher reliability. This value is calculated as

α = 1− Do

De

(2.4)

where
Do = 1

n

∑
r∈R

∑
k∈R

δ(c, k)
∑
u∈U

mu
ncku

P (mu, 2)

De
1

P (n, 2)
∑
c∈R

∑
k∈R

δ(c, k)Pck

and
Pck =

{
c 6= k, ncnk

c = k nc(nc − 1)

Do := Observed disagreement between two classifiers.
De := Expected disagreement by chance.

δ(v, v′) := 1 if v = v′, 0 otherwise
U := A set of items, (i.e. images in the training set)
u := A single item from the set U
R := The set of all classes
Pck := The permutation function

α = 1 means that there is perfect reliability, which in this context means that the
people labelling images are in complete agreement.

19

2. Theory

20

3
Methods

3.1 User survey
In order to understand what matters the most to motorcyclists searching for routes,
a survey in the format of an online questionnaire was conducted. The target group
for the survey should ideally include a representative sample of all motorcyclists that
drive for recreational purposes. We made the assumption that randomly sampling
users from the Detecht user base provides an adequate approximation for this group.
The participants for the survey were drawn from the Detecht user database, from
which 40 000 people were randomly selected. These people were sent an email with
a link to the survey along with a short explanation of the purpose of the survey.

3.1.1 Constructing the survey
Survey questions can be structured either as free response questions or by using a
fixed set of options that can be selected for a question. Using a fixed set of options
is tempting as it simplifies the evaluation process, but there are criticisms of both
approaches [37]. If the response categories are too strictly defined we might miss
out on valuable information that the respondent is unable to relay. On the other
hand, if the options are too free, the result of the survey will be harder to evaluate.
Since the survey was conducted via a web page the construction of the questions was
even more important [38]. The survey had to be exhaustive enough to give valuable
information, while also being easy and convenient for the respondents to complete.

The resulting survey used fixed options for all questions except the last one, for
which the respondent was able to provide any additional information or thoughts.
The survey consisted of 20 questions allowing respondents to complete the survey
within a few minutes.

For a number of the fixed option questions, the respondent could choose between
strongly disagree and totally agree. To encourage respondents to make a definitive
choice, these questions did not include a neutral option. The possible options were
strongly disagree, disagree, agree, and strongly agree.

Some demographics are considered to be at higher risk when riding motorbikes,

21

3. Methods

in particular young male adults [39]. Because of this, the survey also collected
information about the gender and age of the respondent. No other personal data
was collected except for gender and age, in order to secure anonymity and thereby
receiving as honest responses as possible. If a submission to the survey was possible
to connect to a specific individual, the respondents might be encouraged to provide
data of how they want to be perceived rather than how they actually feel [40].

3.1.2 Analyzing the results

The survey was open during a six-week period and received 383 responses in total.
The majority of respondents were males above the age of 40 who had more than 10
years of driving experience. Nearly 40% (153 respondents) of the respondents had
been involved in an accident and 18.8% (72 respondents) had been in an accident so
severe that they had to visit the hospital. The vast majority of responses were from
male respondents older than 40 years. Due to the lack of data, it was not possible
to draw any valuable conclusions from the gender or age of the respondents.

Figure 3.1: Curvature and scenery turned out to be the two most important factors
according the respondents of the survey.

22

3. Methods

Figure 3.2: To find out the respondents’ preferences, they were asked to give a
rating between 1 and 4 for nine different statements. 1 stands for "disagree" and 4
stands for "totally agree".

The results of the survey was used to decide what to focus on. As can be seen in
Figure 3.1 and Figure 3.2, the two most important factors are the road curvature
and the surrounding scenery.

23

3. Methods

Figure 3.3: Examples of images for the chosen categories: forest, field, water and
urban. Images © Google 2020.

3.2 Scenery classification

The scenery classification is based on images drawn from the Google Street View
Static API. The surrounding scenery of a road can be used both to recommend
enjoyable and safe roads. For instance, drivers might prefer a surrounding landscape
rich in lakes and rivers. The scenery can also be used to recommend safer roads by
prioritizing roads with clear sight e.g. by penalizing sharp curves in dense forest
areas. Based on these considerations, the four categories forest, field, water and
urban were chosen. These categories were chosen because they broadly represent
the different types of scenery in Sweden. Figure 3.3 shows examples images for the
four categories.

3.2.1 Selecting coordinates for scenery image sampling

Ideally, all available scenery images would be used for scenery classification. How-
ever, as the images were all taken from the Google Street View Static API, it was
not possible to use all of them. Using all of the images would require too many re-
sources, both computational and economical. Due to these restrictions (mainly the
economical one), the amount of images that could be used for scenery classification
was limited to around 60000.

24

3. Methods

Because of this restriction, a subset of all images available on Google Street View
had to be selected while covering as much area as possible. It is reasonable to
only use images that were taken near roads. If they were not taken near a road,
they are unlikely to make a noticeable difference for the proximity-based routing
algorithm. Because of this, the locations for sampling images to be used for scenery
classification were selected as a subset of available nodes in the road network.

Two main methods of selecting sampling points were evaluated. In the first ap-
proach, nodes are sampled uniformly random. While this method leads to an unbi-
ased selection of points, it has several shortcomings. With this approach, many more
nodes would be sampled from areas with dense road networks like cities than from
less dense areas (see Figure 3.4). Moreover, since there is no mechanism that keeps
nodes apart from each other, many samples are wasted as they are geographically
close to other samples and thus their surrounding scenery will not vary significantly.

25

3. Methods

Figure 3.4: The problem in which many more nodes are sampled in areas like cities
than elsewhere. Each black dot corresponds to one sample. Map © Mapbox 2020
and © OpenStreetMap 2020.

In the second approach, the bounding box of the map is subdivided into rectangular
areas (Figure 3.5) with each area having side lengths 0.05 longitude and 0.05 latitude.
The probability of sampling any given node was set to be proportional to the density
of nodes in its containing area and was computed as

P (Select current node from box i) = N

K · log(ni)

where N is the total amount of nodes to sample, K is the amount of boxes in the
grid, and ni is the total amount of nodes in box i.

26

3. Methods

Figure 3.5: The grid overlay with a side length of 0.05 in latitude and 0.05 in
longitude. The main purpose of using a this approach is to prevent the algorithm
from choosing nodes that are too close together in a dense area, for example a city.
Map © Mapbox 2020 and © OpenStreetMap 2020.

This approach solved the issue where boxes with low node density often would not
receive any samples at all.

27

3. Methods

Figure 3.6: Sampled points by using the grid sampling method. Maps © Mapbox
2020 and © OpenStreetMap 2020.

Figure 3.6 shows the clustered result of the grid sampling approach. The nodes are
somewhat evenly distributed, with urban areas containing more nodes than rural
areas.

Figure 3.7: Splitting the map into grid sections caused problems in some areas.
For example, areas that contained coast line would see a large amount of samples
in a small area because most of the grid area is water. Map © Mapbox 2020 and ©
OpenStreetMap 2020.

28

3. Methods

This approach improved the sampling, but its results still exhibit the problem of
nodes being too close to each other. This was especially apparent in areas where most
of the box area consisted of water (see Figure 3.7). In order to space out samples
more evenly, two distance-related factors were added to the sampling probability
function. Two commonly used formulas for calculating distances on spheres and
ellipses respectively are the Haversine (section 2.3) formula and Vincenty’s formula
[23]. The Haversine formula was chosen for distance calculations because it has a
faster average running time [23]. The first factor pprox uses the distance between
current and the previous node in the way. With

nprev := Previous node in the way.
ncurr := Current node being considered.

nnearest := Nearest already sampled node.
D := The maximum distance (2 kilometers)

We have

pprox1 = min(15, exp haversine(nprev, ncurr))

The second factor uses the distance between the current node and the nearest already
sampled node:

pprox2 = 2 ·
(

4
(1 + exp(−0.5 · haversine(ncurr, nnearest)))

− 2
)3

Figure 3.8 illustrates how the second probability factors impacts the sampling like-
lihood. The final probability of sampling a node in box i is computed as:

P (Select current node from box i) = pprox1 · pprox2 ·
N

K · log(ni)

Using these modifications, the samples were more evenly distributed across the area.
Figure 3.9 shows an example of sampling with these modifications and how the
changes resulted in a more even distribution of samples, with Figure 3.10 showing
an example of the improvement in areas consisting primarily of water (compare to
Figure 3.7).

29

3. Methods

Figure 3.8: pprox2: The probability of sampling a node increases with the distance
to the last node.

Figure 3.9: An example of what the final sampling method produced. Each black
dot corresponds to one sample. Map © Mapbox 2020 and © OpenStreetMap 2020.

30

3. Methods

Figure 3.10: Areas with lots of water no longer contained too many samples (each
black dot corresponds to one sample). Map © Mapbox 2020 and © OpenStreetMap
2020.

3.2.2 Collecting additional data for under-represented cat-
egories

When images were sampled from locations given by this sampling scheme, forest
and field images were heavily over-represented while locations close to water were
under-represented. With only samples from this method, there were not enough
water images present for the network to be able to properly classify water images.
There are several reasons for why we encountered this problem (see chapter 5).
Unbalanced data is a common problem in machine learning [41] and several methods
exist to deal with this, for example redistributing the data [42].

We used a slightly modified version of the sampling approach described earlier to
increase the amount of water images in the data set. The OSM data contains tags
that can be used to filter out water nodes. For the sampling of points from which
to sample images of (hopefully) water, we included only ways and relations that
fulfill: Either the tag natural = water is present, or the tag water = v is present,
where v /∈ {basin, wastewater}. Except for this change, the sampling scheme was
the same as the one described above (see subsection 3.2.1). This sampling scheme
was used to collect additional images that contain water, augmenting our first data
set to better represent water scenery.

3.2.3 Direction and field of view
When using the Google Street View Static API, it is possible to set the desired
direction and field of view of the image. Because the scenery on the left and the

31

3. Methods

right side of the road might look different, we fetched one image in each direction.
In order to get imagery that resembles the driver’s field of view we calculated the
direction of the road and fetched one image pointed 50° to the left and 50° to the
right. The field of view was set to 100°. With this approach we were able to retrieve
images that covered an angle of 100° (see Figure 3.11).

Figure 3.11: Images are fetched to the left and to the right of the driving direction.
Images © Google 2020, map © Mapbox 2020 and © OpenStreetMap 2020.

For images sampled from the water points we made use of a slightly different ap-
proach. Since water is typically only present on one side of the road, for example
if the road runs along a lake, these images are fetched using a different method.
The direction of the fetched image was set to the angle between the water node and
the nearest node in the Street View API that contained imagery (see Figure 3.12).
Using this method, we only had to fetch one image for each water node.

Figure 3.12: Images that were sampled from the water node data-set had their
direction pointed towards the water node in order to capture more water. Images ©
Google 2020, map © Mapbox 2020 and © OpenStreetMap 2020.

32

3. Methods

3.2.4 Classifying imagery
Image classification was done by feeding the images through a convolutional neural
network that for each image outputs the probability of it belonging to each class.
The nodes in the graph were then tagged with these scenery probabilities. These
probabilities were stored in the format shown in Table 3.1 and Listing 3.1.

Name Value Description
forest [0, 1] A measure of the confidence that the image contains

forest.
field [0, 1] A measure of the confidence that the image contains

field.
water [0, 1] A measure of the confidence that the image contains

water.
urban [0, 1] A measure of the confidence that the image contains

urban features (e.g. houses).

Table 3.1: Numerical representation of the scenery in an image

1 {
2 "forest": 0.85,
3 "field": 0.1,
4 "water": 0.05,
5 "urban": 0.02
6 }

Listing 3.1: An example of scenery representation in JSON to be used by the
routing algorithm.

Three different approaches were considered: training a network from scratch, using
a pre-trained model and using a pre-trained model in combination with transfer
learning. The first option was ruled out due to the extensive computational resources
that would be required to train a network from scratch [43].

The second option we considered was to use a ResNet18 [?] network pre-trained on
the Places365 [44] data set. The network outputs a probability score for 365 classes.
A few of these classes were relevant when looking at sceneries along a route, while
most of them were irrelevant (for example "praying", "eating" and "stressful"). One
approach of handling these categories is to create a mapping from the predictions
made by the network to the relevant classes of forest, field, water and urban. This
approach was ruled out partly due to the large amount of irrelevant classes and
partly because the training data contains few images similar to the ones taken from
Google Street View.

The third and final option was to use a pre-trained model and make use of transfer
learning in order to adapt the model to our data (see subsection 2.8.2). By using

33

3. Methods

a pre-trained network, ResNet50 [?], the time it takes to train a model can be
significantly reduced [45].

3.2.5 Obtaining and categorizing training data
While there is an extensive amount of images available from Google Street View,
the coverage of Sweden is not perfect. We therefore had to make sure that there
was imagery available at the points that had been selected from the sampling before
making the actual request for downloading them.

Another aspect that had to be taken into account was the cost of using the Google
Street View Static API. A trade-off had to be made for downloading enough images
to get meaningful data while staying within budget. Ideally, one would like to fetch
images from every available point to get as accurate result as possible. Since this
proved to be too costly, we had to limit the amount of data (see subsection 5.2.2).

The images were stored both locally and in a storage bucket in Google Cloud. For
every image downloaded, we also saved an entry in a document database containing
information about the coordinates of the image, which heading the camera was
pointed at and what label that should be associated with the image.

The accuracy of convolutional neural networks generally improves significantly with
larger training sets [46]. As such, it would have been ideal to classify as many images
as possible. We had to make a trade-off between the number of images to label and
the time we could spend on it. The number of images were selected so that the
image labelling could be finished within one working day if we spent five seconds
per image, the total number of images labelled ended up being 4774.

Since labelling images is a somewhat subjective task it was also desirable to have
several people labelling the same images. To simplify the labelling task, we built a
web frontend where images could be fetched from our backend, labelled by a person
and stored back to the database. This allowed us to ask several people for help
with the labelling task. The difference in how different people labelled the data was
measured with Krippendorff’s alpha [47] (see subsection 2.8.3).

Figure 3.13 shows the web frontend which was built using React [48] with Semantic
UI [49]. Firebase [50] was used as the backend for storing the labelling results.

Apart from the image itself, the speed limit (where available) was also shown for
each image. The speed limit was shown because certain images would benefit from
the user having access to additional data. The user were given the choice to classify
the image into one of the categories forest, field, water, urban and miscellaneous.
Images categorized as miscellaneous were not used for training the network. The
users could also tag an image with additional information as well as adding their
own tags. These tags ended up not being used in the final product due to time
constraints, see chapter 5.

34

3. Methods

Figure 3.13: The frontend for image classification. The highest allowed speed is
shown in the top left corner of the image. To the right of the image the labeller is
able to select one of five categories. Image © Google 2020.

3.2.6 Training the network

The implementation of the network was mainly done in PyTorch [51] where ResNet50
is included as a pre-trained model. Before feeding the images to the network, a
number of random transformations was applied on the training set. The images
were first scaled down to 256x256 pixels, then rotated a random amount between
-15 and +15 degrees. Each image where then flipped horizontally with a probability
of 0.5 before the center 214x214 pixels of the image was cut out (see Figure 3.14).
The reason for doing this transforming and distorting the images was to prevent
over-fitting and making the network generalize better, even on a relatively small
training set. It also contributes to making the feature detection part of the network
more versatile [52].

During training, the weights of all layers were frozen except for the last layer, which
was replaced with a new set of layers. The final layer of this new set of layers was
a softmax layer with four outputs, one for each scenery category. The final softmax
layer produces values in the range [0, 1] which can be interpreted as a probability of
the image belonging to that category [32].

35

3. Methods

Figure 3.14: Transformations are applied to images in the training set in order to
make the network generalize better. Images © Google 2020.

The subset of the data that had been manually labelled was split into a train, test
and validation set using a 60% of the images for training, 20% for test and 20%
for validation. The network was trained for 20 epochs and then evaluated on the
validation set which was used to tune the hyper parameters [53]. Figure 3.15 and
Figure 3.16 show the results of this training.

36

3. Methods

Figure 3.15: Loss curves of the model for image classification.

Figure 3.16: Accuracy curves of the model for image classification.

37

3. Methods

3.3 Incorporating scenery and curvature data
OSM data for Sweden was downloaded from the Geofabrik website. This data had
to be augmented with curvature and scenery data so that the routing algorithm
could access it. Because of the size of the OSM data for Sweden, it cannot all be
stored in memory at the same time on a typical machine. Moreover, the ways and
relations of this data only hold reference ID’s to their nodes. A lookup has to be
performed to retrieve information about a node such as its coordinates. The lookups
were made possible by storing the OSM data in a PostgreSQL database with the
PostGIS extension. The tool osm2pgsql [54] was used to load the OSM data into
the PostgreSQL database.

3.3.1 Adding curvature to the OSM data
A curvature data point is a value c ∈ R+ with higher values being better, i.e. more
curvature. The curvature value for a way is calculated by segmenting the way into
node triples {(n0, n1, n2), (n1, n2, n3), . . . , (nk−2, nk−1, nk)} where k is the amount of
nodes in the way. These node triples are then used to calculate the curvature using
the radius of their circumscribed circle. If the circumcircle radius of a segment
exceeded 10 000 meters, that segment was considered to be straight. Listing 3.2
contains pseudo code for how the curvature value of a way is calculated.

1 total_distance = 0
2 weighted_distance = 0
3

4 prev_segment_length = 0
5 prev_radius = 10 000
6

7 for i = 1, k:
8 n2 = nodes[i - 1]
9 n3 = nodes[i]
10

11 segment_length = haversine_distance_on_earth (n2, n3)
12 total_distance += segment_length
13

14 if (i == 1)
15 weighted_distance += segment_length
16 prev_segment_length = segment_length
17 continue ;
18

19 n1 = nodes[i - 2]
20

21 base_length = haversine_distance_on_earth (nodes[i-2],
nodes[i])

22 radius = min(10 000, circumcircle_radius (

38

https://download.geofabrik.de/europe/sweden.html

3. Methods

23 prev_segment_length ,
24 segment_length ,
25 base_length
26)
27

28 weighted_distance +=
29 segment_length * get_curvature (min(radius,

prev_radius))
30

31 prev_radius = radius
32 prev_segment_length = segment_length
33

34 way_curvature = weighted_distance / total_distance

Listing 3.2: Pseudo code for calculating curvature. The way_curvature value is
used as the curvature value for the way.

3.3.2 Adding scenery to the OSM data
A scenery data point is a vector of real values [s0, s1, . . . , sT], st ∈ [0, 1] where T is
the amount of scenery categories. The scenery data of a way is a combination of
the scenery data along its nodes. Since only a fraction of all nodes have scenery
data associated with them (see subsection 3.2.1), the sceneries for nodes without
associated scenery data were computed as a combination of the at most three1
nearest2 nodes containing scenery data.

Let Nw be the nodes of way w. With S being the set of the at most three nearest
scenery samples, the value V t

n for scenery tag t for a node n is computed as V t
n =

maxs∈S s
t, where st denotes the value for scenery category t at node s. For a complete

way w, the scenery category value V̂ t
w for scenery category t is computed as the

average of the scenery category values of its nodes:

V̂ t
w = 1
|Nw|

|Nw|∑
i=1

V t
i

The final scenery of the way is Uw = {V̂ 1
w , V̂

2
w , ..., V̂

T
w }. This set of values are used

when routing for the different routing profiles that rely on scenery data (see subsec-
tion 3.4.3).

Figure 3.17 shows an overview of the locations that were given scenery data using
this approach.

1There may be fewer than three if the nearest scenery samples are too far away.
2The nearest node queries were performed using an R-Tree implementation called jsi, available

at https://github.com/aled/jsi.

39

https://github.com/aled/jsi

3. Methods

Figure 3.17: Locations with scenery data. Green points correspond to forest,
yellow points to field, blue points to water and grey points to urban. The rightmost
image shows a zoomed-in view of the scenery locations around Gothenburg. Maps
© Mapbox 2020 and © OpenStreetMap 2020.

3.4 Routing

3.4.1 Choice of routing engine

There are several routing services available online such as Google Routes and Map-
box Directions. These services are suitable for general routing, but the requirements
of this project called for more customizability, hence the need for open source soft-
ware. At the time of writing, there were two main open source routing engines;
Project OSRM written in C++ and Graphhopper written in Java. Graphhopper
was chosen because of the authors familiarity with the Java language. The Graph-
Hopper routing engine supports the three routing modes flexible mode, speed mode
and hybrid mode. The flexible mode allows for more customization on a request
basis, but queries for points that are far apart can take minutes to complete. The
speed mode makes use of contraction hierarchies [55] and is around 10 times faster
[56]. The speed mode for routing has been used throughout the project.

40

https://cloud.google.com/maps-platform/routes
https://docs.mapbox.com/help/how-mapbox-works/directions/
https://docs.mapbox.com/help/how-mapbox-works/directions/
https://github.com/Project-OSRM/osrm-backend
https://github.com/graphhopper/graphhopper

3. Methods

3.4.2 Route weighting function
The routing algorithm tries to minimize the total weight of the route. The final
weight w for an edge is calculated as

wr = road_distance
log (road_max_speed)(0.5 + priority)

w = f(curvature) · g(scenery) · wr

(3.1)

where f := R+ −→ R+ (a function of curvature), g := Scenery −→ R+ (a function
of scenery), and priority is a modifier based on the road type of the OSM way. The
logarithm of the speed is used to decrease the impact of highways on the weight, as
we generally want to avoid highways. The functions f and g can be adjusted based
on preference. For instance, they could be chosen to reward a curvy road that does
not encounter many urban areas. The road type of a way is given in OSM by the
string value rv of the highway key3. The priority is calculated based on the sets in
Listing 3.3 as4:

Listing 3.3: The avoid set and the prefer set for the priority parameter.
1 avoidSet = {'highway ', 'secondary ', 'tertiary '}
2

3 preferSet = {
4 'motorway ', 'trunk ', 'motorroad ', 'residential ',
5 'living_street ', 'service '
6 }

x =

0, for rv ∈ avoidSet
7, for rv ∈ preferSet
4, otherwise

priority = x

7

3.4.3 Routing profiles
Routing in GraphHopper is done based on profiles. A profile consists of a vehi-
cle configuration and a weighting configuration. The vehicle configuration contains
vehicle-specific routing parameters. Some examples are default speeds for different

3The OSM highway key is described here.
4These priority values were used because they are standard priority values for GraphHopper

routing (see PriorityCode).

41

https://wiki.openstreetmap.org/wiki/Key:highway
https://github.com/graphhopper/graphhopper/blob/master/core/src/main/java/com/graphhopper/routing/util/PriorityCode.java

3. Methods

road types, penalties for road surface, and road accessibility information (for in-
stance, pedestrian paths should be excluded from motorbike routing). In order to
speed up routing, GraphHopper performs preprocessing once for each profile. Be-
cause this preprocessing takes some time, it places a limit on the amount of profiles
that can be used in practice. Through experimentation, we settled on the following
profiles that use the curvature and scenery data (c is curvature, wr is the regular
weight given in Equation (3.1), and Sc is the scenery value for scenery category c):

1. Very low curvature, w =
8
c3 · wr

2. Low curvature, w =
4
c3 · wr

3. Medium curvature, w =
2
c3 · wr

4. High curvature, w =
1
c3 · wr

5. Forest with high curvature, w =
1
c3 ·

6
exp (3 · Sforest)

· wr

6. Field with high curvature, w =
1
c3 ·

6
exp (3 · Sfield)

· wr

7. Water with high curvature, w =
1
c3 ·

6
exp (3 · Swater)

· wr

A preprocessed graph was generated for each of these profiles using contraction
hierarchies. The preprocessing for these profiles took around 15 minutes in total.

3.5 Safety aspects
Motorcycle accidents are commonly caused by road user mistakes, both from the
motorcycle driver and from other road users [57]. A study on motorcycle accidents in
the UK found that junctions are a place where other road users are particularly bad
at detecting motorcycles. Motorcycle drivers themselves are more likely to cause an
accident in curves or when trying to overtake another vehicle [57]. The study points
at education and driver awareness being an important tool to reduce accidents. In
addition to this, it also mentions the ability of the rider to plan ahead as important,
especially when the rider is approaching a curve.

Exploring ways of changing the behavior of motorcycle riders and other road users
is beyond the scope of this study. Therefore, we instead focus on warning the rider
when potentially dangerous road sections are approaching, such as curves and junc-

42

3. Methods

tions. Additional factors that can be taken into account for the dynamic warnings
system are discussed in chapter 7.

The warnings can be relayed to the driver in different ways. Some possible ways of
doing it are auditory, haptically, and visually. Out of these three ways, haptic and
auditory feedback is more effective and also preferred by riders over visual feedback
[11; 58].

3.5.1 Curvature warnings

When approaching a curve it is important for the driver to adapt their speed accord-
ingly so that it can be passed safely. To determine whether or not to give a warning,
we looked at three factors: the current location of the driver, the curvature of the
upcoming road section and the speed at which the driver is moving. The location of
the driver and its speed can be obtained via the GPS-module in the user’s phone.
Upcoming coordinates are given by the routing engine and updated continuously.

For each update of the coordinates a "danger"-value is calculated as follows:

danger = speedWs

Wc · radius + distance

Ws := Weighting of current speed. (3.2)
Wc := Weighting of curve radius. (3.3)

For the purpose of testing the algorithm we tried a few different approaches for how
to calculate the danger-value and what the constants should be. While being usable
for testing the interface, the calculation of the danger-value is subject for future
work and the constants will have to be tuned in order for the algorithm to be useful
in real life situations. The curve radius weight Wc was set to 1.8 and the speed
weighting Ws was set to 2.0. More about this under subsection 5.2.3.

To test how this works in a real life setting we implemented a simple version of it
in the Detecht app (see Figure 3.18). The features were only visible to selected test
users.

43

3. Methods

Figure 3.18: Example of curvature warning in the app. The box in the upper left
corner of the map shows the values that the danger-value is based on, together with
the current speed. These values are not intended to be shown to the end user but are
only used for reference during development. The screenshots show three different
levels of danger; low, medium and high. These danger levels are represented as
green, yellow and red in the bar on the right-hand side. The height of the bar also
indicates the current amount of danger as described earlier. Maps © Mapbox 2020
and © OpenStreetMap 2020.

44

3. Methods

3.5.2 Nearby road works
Road networks all over the world undergo constant transformation. New roads are
built and existing roads are being repaired and rebuilt. For a motorcyclist, entering
an area with an ongoing construction might pose increased danger as well as making
the driving more difficult. By utilizing an open API from Trafikverket, road warnings
are fetched and displayed to the user as shown in Figure 3.19.

Figure 3.19: A prototype of road warnings. Only warnings in close proximity to
the route are shown. Details are shown when the user taps a warning symbol. Map
© Mapbox 2020 and © OpenStreetMap 2020, Icons © Icons8 https://icons8.com/.

45

3. Methods

46

4
Results

4.1 Scenery image classification

4.1.1 Agreement between the labellers

The agreement between labellers (n = 2) was measured by Krippendorff’s α. A high
value indicates a high level of agreement. As discussed in section 5.1, some images
are difficult to label correctly since they can fall into several categories. The result
for Krippendorff’s α, 0.631, is to be considered as rather bad which we believe is
due to the difficulty of labelling the content of images into only one categorys.

Percent
Agreement

Krippendorff’s α
(nominal)

Agreements Disagreements Total
cases

75.7% 0.631 1209 389 1598

4.1.2 Size of training set

Due to time and monetary constraints we had to limit the number of images used
for training. The results, presented in and Figure 4.1, show how the accuracy (in
%) of scenery classification varies with the size of the data set used for training the
neural network. A number of training sessions were carried out in order to find out
whether or not a bigger training set would yield more accurate results. It turned
out this was not the case; increasing the number of images used for training only
has a marginal positive effect on the accuracy.

47

4. Results

Figure 4.1: Performance of the network when using data sets of varying size.

48

4. Results

4.2 Routing

The routing was performed on a 64-bit Windows 10 machine using the Intel(R)
Core(TM) i5-8400 CPU. On this machine, the routing runs in real time for each
profile. The longest routes possible, i.e. from the southernmost part of Sweden to
the northernmost part, are calculated in less than 100 milliseconds for any of the
profiles. Table 4.1 shows typical routing times for routes of varying length.

Table 4.1: Running times for routing with any profile where the resulting route
has a certain length.

5 km 50 km 500 km 1500 km
Any routing profile ∼1 ms ∼2 ms ∼20 ms ∼30 ms

4.2.1 Comparing different level of curvature

As described in subsection 3.4.3, the curvature weighting parameter can be adjusted
to a desired level of curvature. Figure 4.2 shows comparisons between the fastest
route in grey and routes with varying level of curvature in orange.

49

4. Results

(a) Routing profile: High curvature (b) Routing profile: Medium curvature

(c) Routing profile: Low curvature (d) Routing profile: Very low curvature

Figure 4.2: Different routes from Gothenburg to Stockholm, each route created using
one of the curvature routing profiles. The orange line in each figure corresponds to the
curvy route, and the gray line corresponds to the fastest route. Maps © Mapbox 2020 and
© OpenStreetMap 2020.

50

4. Results

4.2.2 Comparison to other routing services

A number of comparisons were done between routes generated using the algorithms
in this thesis and existing routing services on the market. We chose to compare
against two popular services, namely Calimoto [16] and Kurviger [17]. The route
used in these comparisons starts in Halmstad and ends in Uppsala. This route was
chosen due to the many alternative routes that are available between these cities.

4.2.2.1 Calimoto comparison

Figure 4.3 compares our curvature routes with routes from Calimoto created with
their "super twisty route" option enabled.

51

4. Results

(a) Routing profile: High curvature (b) Routing profile: Medium curvature

(c) Routing profile: Low curvature (d) Routing profile: Very low curvature

Figure 4.3: Our curvature routes compared to the route generated by Calimoto, between
Halmstad and Uppsala. The orange line corresponds the route generated by our algorithm
and the gray line is the route generated by Calimoto. Maps © Mapbox 2020 and ©
OpenStreetMap 2020.

52

4. Results

4.2.2.2 Kurviger curvature comparison

The route from Kurviger was created using the "Extra curvy" option. Figure 4.4
shows comparisons between the route generated by Kurviger and routes generated
using our curvature profiles.

(a) Routing profile: High curvature (b) Routing profile: Medium curvature

(c) Routing profile: Low curvature (d) Routing profile: Very low curvature

Figure 4.4: A route from Gothenburg to Stockholm, calculated using four different rout-
ing profiles. The orange line corresponds to a curvy route, and the gray line corresponds
to the fastest route. Maps © Mapbox 2020 and © OpenStreetMap 2020.

53

4. Results

4.3 User evaluation of routes

In order to evaluate routes generated by the algorithm, we invited six users that
had previously shown interest in being beta testers of the Detecht app. Each person
was shown 7 different routes between two locations and were asked to select their
top three choices from these routes.

Since some of the alternatives are very similar we also gave them the option to let
several route alternatives have the same ranking in the list. The participant was
asked to rate the routes based on how likely they were to ride each route. For
example, if the user thought that the forest-route and the field route was the best
routes and could take either one of these, he or she could assign both with a ranking
of 1. Table 4.2 shows the results of the user evaluation.

A common opinion from the users in the test group was that they often took many
more factors into consideration when choosing which route to take. Examples of
these were the road surface, amount of traffic on the road, weather conditions and
the time of day they are going for a ride.

Fo
re
st

Fi
eld

W
at
er

Cu
rv
at
ur
e

Fa
ste
st

Ku
rv
ige
r

Ca
lim
ot
o

Uddevalla
Strömstad 3 2 2 2 1 1

Helsingborg
Kristianstad 2 3 3 1 1

Kungälv
Varberg 2 2 2 2 3 1 1

Stockholm
Uppsala 1 3 2

Malmö
Ystad 3 3 2 1

Örebro
Södertälje 1 2 2 2 3 1

Göteborg
Jönköping 3 2 1

Table 4.2: Top three route choices by users for different routes, with 1 being the
top choice.

54

4. Results

Table 4.3: Warning system feedback from the participants in the survey.

Positive Negative
Visual Easy for the driver to un-

derstand and correctly in-
terpret warnings.

Might draw attention from
the road and make risky sit-
uations even more risky.

Audible Can be used to give detailed
feedback about the specific
danger approaching, for ex-
ample a sharp curve or a
road work.

Requires the driver to use a
headset. Can be distracting
if it is poorly implemented.

Haptic
Phone Could be used to give

feedback without distract-
ing the attention from the
driver

Might be difficult to feel.
Only works if the driver car-
ries the phone close to their
body, i.e. not if it is at-
tached to handlebar.

Haptic
Watch Always close to body so the

haptic feedback would pos-
sible to feel even when the
phone is mounted on the
handlebar. Could work well
in conjunction with other
types of warnings.

Might also be difficult to
perceive while driving. Dif-
ficult to feel the difference
between a curvature warn-
ing and other types of hap-
tic feedback. Creates a need
for the user to be well aware
of how the warning system
works in order to interpret
the warnings.

4.4 User evaluation of warnings
To evaluate warnings, a prototype was implemented in the Detecht app and shown
to test users. Their evaluation of the system was done at the same time as they eval-
uated the different routes. While more extensive testing is required before deploying
such warnings systems, the initial feedback showed that it would be beneficial to
have access to dynamic warnings. One common feedback was that a warning system
like this would give them more time to plan their driving and avoid making use of
hard breaking which might itself cause an accident.

One important aspect of the warning systems was how to deliver the warnings
to the users. Four different ways were suggested: visually on screen, audible via
headphones, haptic feedback via the phone and finally haptic feedback through a
smartwatch. The feedback from the participants in the survey was compiled into a
table of positive and negative aspects for each solution (see Table 4.3).

55

4. Results

56

5
Discussion

The main aim of this study was to create a routing system based on enjoyability
factors. Results from the initial survey helped confirm our suspicions that curvature
and surrounding scenery were both important factors for an enjoyable route. The
number one most important factor for the users was that a route contained "a lot
of curves". As shown in the results, we have created a routing system that takes
curvature and scenery into account. In the user evaluation, where our routes were
compared to those of kurviger.de and Calimoto, most users preferred the kurviger.de
and Calimoto routes.

A common opinion among the participants of the evaluation was that our routes
often included larger and straighter routes while the routes of the other services
favored smaller, more curvy ones. This suggests that the algorithm should perhaps
prefer curvy routes to a higher degree. It also suggests that larger roads should
receive higher penalties. For instance, with the current algorithm, the weights of
roads that are tagged as highway, secondary, or tertiary is doubled. Better results
might be achieved by further increasing the weight penalties of such roads.

The participants were positive to the concept of using the surrounding scenery as
a factor for routing. However, this positivity did not translate to a preference of
routes that used scenery as a factor for routing. There are numerous reasons for
why this might be the case. We could identify four possible causes:

1. Lack of data - The data used is too sparse leading to not being enough
scenery data points to make a significant impact on the routing.

2. Poor classification - The accuracy of the classifier might be too small leading
to unreliable scenery data.

3. Poor algorithm - The algorithm might not use the data in an adequate way.

4. External factors - The classification of the routes was correct but other
factors such as heavy traffic or road conditions make them undesirable to ride.

Of these, poor classification is likely the least valuable to try to improve. With the

57

5. Discussion

method we used, we were able to achieve an accuracy of around 80 %, which means
that the gains that can be made here are limited. Furthermore, while the algorithm
can undoubtedly be improved, its efficiency is limited by the amount of available
data. That leaves lack of data as the obvious issue to address first. With the current
amount of scenery data, many route nodes do not have any nearby scenery. Adding
more data here should improve the routing that is based on scenery.

The external factors could definitely be improved, for example by taking into con-
sideration the current traffic situation and evaluating the road conditions.

While only a handful of people participated in the route evaluation, its results do
indicate that further improvements are necessary to perform better than existing
services.

5.1 Image labelling
Labelling the images turned out to be a more complex task than we first antici-
pated. While many of the images clearly consisted of forest, water or free-sight (see
Figure 5.1), there are also a significant amount of images in the training set that
might be placed somewhere in between these.

Figure 5.1: Examples of images that are easy to classify. Images © Google 2020.

Figure 5.2: Examples of images that are difficult to classify. Images © Google
2020.

58

5. Discussion

Figure 5.2 shows three images that are more difficult to classify. The first image
is easy for a human to classify as field. However, with a tree obstructing a large
portion of the image, there is a risk that the network will wrongfully classify this
as forest. For the second image we have a road running along the water but only
a small portion of the water is visible in the image. We believe that this kind of
images are difficult to classify both for a human labeller and for the neural network.
One could argue that the image can be classified both as forest and water. The last
image contains two types of scenery; forest on the left side on the road, and field on
the right side of the road.

5.2 Limitations

5.2.1 Geographical area
Only data from the geographical area of Sweden was used in this project. We
chose Sweden due to our familiarity with its landscape and some of its roads. This
allowed us to analyze roads that we had driven before and make rough estimates
of the quality of our results in the early stages of the project. Using a larger area
such as all of Europe would be possible, but doing so would add a considerable
amount of time to the preprocessing of graphs. It would also complicate the scenery
classification by bringing in a more diverse range of possible sceneries.

5.2.2 Scenery classification
The scenery classification is based on an image data set that consists of images taken
along Swedish roads. The Google Street View Static API was used to retrieve this
image data set, mainly because it is a large data set. However, only a subset of this
data set could be used due to Google’s pricing plans. Around 60 000 images were
sampled from this data set and used to determine the surrounding scenery of roads
across Sweden.

There was a limitation in how many images we would be able to use for the training
set, mainly due to the time it took to classify each image manually. As described in
subsection 4.1.2, the performance of the model does increase with a larger training
set, but the increase seems to level out. We limited ourselves to labelling 4774 images
and we don’t believe that using a larger data set would have made a significant
impact on the performance of the model.

Ideally one would like to have at least two different persons labelling the images. If
the labels do not match up the labellers could go back and re-evaluate them. Due
to time constraints we only had multiple labellers for a subset of the training data.

5.2.3 Curve warnings algorithm
The curve warning algorithm currently only works if the user drives along a pre-
determined route. If the user makes a detour from this route or for some reason is

59

5. Discussion

unable to follow it the route must be re-calculated before it is possible for the driver
to receive curve warnings. The main reason for doing this implementation was so
that we can receive a list of upcoming coordinates. A more generalized solution
could take the current position and heading of the user and calculate a probability
for that the driver would be riding towards a certain coordinate.

60

6
Conclusion

The aim of this research was to create a routing system that could recommend
routes based on enjoyability factors such as curvature and the surrounding scenery
of the route. We have proposed a system that can recommend enjoyable routes to
motorbike riders based on the curvature of the route and its surrounding scenery.
The system makes use of OpenStreetMap data and images from Google Street View.
While the results we show are based on data from within Sweden, the routing system
can be adapted to work in other geographical areas as well. The evaluation of
the results indicates that our solution performs worse than existing alternatives.
The comments from participants of the final evaluation suggest that the routing
algorithm should perhaps favor roads with high curvature even more than it already
is. The initial results of using surrounding scenery for routing is promising, but we
suspect that more data is necessary to make significant improvements to routing by
using images of the surrounding scenery of the road.

We have also developed a concept for informing riders about safety aspects of their
route, such as if they are approaching a curve too quickly, as well as information
about road works along the route. Initial results shows promise but need more
evaluation before being implemented into a real world product.

61

6. Conclusion

62

7
Future work

We suggest that the first step for continuing this work is to investigate whether easy
gains can be made in routing quality. As we see it, the primary avenues for such
gains are an even more favorable weighting for roads with high curvature, and using
more scenery data to hopefully improve the quality of the scenery-based routing.
Finally, these changes should be evaluated more thoroughly than the evaluation we
were able to produce for this work, in order to increase confidence in the viability
of this routing approach.

In addition to these possible improvements, there are several ways in which this
work can be scaled up or otherwise improved:

Expanding the area The geographical area of this project is limited to the
Swedish road network (see subsection 5.2.1). It is highly likely that road networks
in different parts of the world have other aspects that need to be taken into con-
sideration when designing a routing algorithm. A suggestion for future work is to
explore how to scale up to larger areas.

Adding more types of scenery Only commonly occurring sceneries in Sweden
were taken into consideration for the system that classifies the surroundings of a
road. In other areas of the world this system might therefore not be applicable.
For this system to be applicable to other geographical areas, it would have to be
changed. This change could either be to include more types of scenery, or to adapt
the scenery used for training of the neural network based on the area of interest.

Additional routing factors When evaluating the results of the routing algo-
rithm, it became evident that drivers often take into consideration more factors than
curvature and scenery. These factors included for example road surface, amount of
traffic, the current weather and time of day. A suggestion for future work is to
include these in the routing engine in order to generate more tailored route choices.

Dynamic warnings There are numerous additional factors that can be taken into
account for the dynamic warnings system. Apart from looking at the curvature of
the road in two dimensions, we could also factor in the change in elevation of the

63

7. Future work

road since this place a role in what the driver can see. Additionally, when the driver
passes over the top of a hill, the force of the vehicle against the road surface will be
lower than when driving on a flat road.
The current weather conditions can also play an important role. If the dynamic
warning system had awareness of the current weather conditions it would be possi-
ble to warn the user when the drivers of approaching traffic experienced back-light.
Using the information about current and previous precipitation in combination with
road elevation would allow the system to warn for potentially dangerous water re-
tention along the route.
Apart from road works along the route, it might also be valuable to warn the user
when he or she passes through an area with schools or hospitals so they can be more
aware of the surroundings.

More thorough evaluation More thorough tests and evaluations using a larger
test group would be useful for further evaluating the results and how they compare
to other existing solutions. It proved difficult to evaluate the routes in an objective
manner due to the vast amount of factors that drivers take into account when
choosing a route.

If the routing system was put into use, another way of evaluating the system would
be to track how often users choose routes generated by our algorithm. If users often
choose our routes, it is indicative of that the routing system performs well.

64

Bibliography

[1] R. Frash Jr, J. Blose, W. Smith, and K. Scherhag, “A multidisciplinary mar-
keting profile of motorcycle tourists: explorers escaping routine to find flow on
scenic routes,” Tourism Recreation Research, vol. 43, no. 4, pp. 432–444, 2018.

[2] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer.
Math., vol. 1, pp. 269–271, Dec. 1959.

[3] G. Gallo and S. Pallottino, “Shortest path algorithms,” Annals of Operations
Research, vol. 13, no. 1, pp. 1–79, 1988.

[4] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path distance
estimation in large networks,” in Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM ’09, (New York, NY, USA),
p. 867–876, Association for Computing Machinery, 2009.

[5] B. Leder, “Parameters and characteristics of motorbike rider related route
determination,” Vienna, Austria, University of Applied Sciences Technikum
Wien, 2011.

[6] O. Njå and S. M. Nesvåg, “Traffic behaviour among adolescents using mopeds
and light motorcycles,” Journal of Safety Research, vol. 38, no. 4, pp. 481 –
492, 2007.

[7] M. T. Yousif, A. F. M. Sadullah, and K. A. A. Kassim, “A review of behavioural
issues contribution to motorcycle safety,” IATSS Research, 2019.

[8] F. Malin, I. Norros, and S. Innamaa, “Accident risk of road and weather condi-
tions on different road types,” Accident Analysis Prevention, vol. 122, pp. 181
– 188, 2019.

[9] S. Hecker, A. Liniger, H. Maurenbrecher, and D. Dai, “Learning a curve
guardian for motorcycles,” IEEE Intelligent Transportation Systems Confer-
ence (ITSC), 07 2019.

[10] World Health Organization, Global status report on road safety 2015. World
Health Organization, 2015.

65

Bibliography

[11] M. Song, S. McLaughlin, and Z. Doerzaph, “An on-road evaluation of con-
nected motorcycle crash warning interface with different motorcycle types,”
Transportation Research Part C: Emerging Technologies, vol. 74, pp. 34 – 50,
2017.

[12] F. Biral, M. Da Lio, R. Lot, and R. Sartori, “An intelligent curve warning
system for powered two wheel vehicles,” European Transport Research Review,
vol. 2, no. 3, pp. 147–156, 2010.

[13] T. Novack, Z. Wang, and A. Zipf, “A system for generating customized pleasant
pedestrian routes based on openstreetmap data,” Sensors, vol. 18, p. 3794, 11
2018.

[14] D. Luxen and C. Vetter, “Real-time routing with openstreetmap data,” in Pro-
ceedings of the 19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS ’11, (New York, NY, USA), p. 513–516,
Association for Computing Machinery, 2011.

[15] OpenStreetMap contributors, “Openstreetmap,” 2020. [Online]. Available:
https://www.openstreetmap.org, Accessed on: Feb 07, 2020.

[16] Calimoto GmbH, “Calimoto trip planner,” 2020. [Online]. Available:
https://calimoto.com/en/motorcycle-trip-planner, Accessed on: Apr 15, 2020.

[17] TTI GmbH - TGU Kurviger, “Kurviger,” 2020. [Online]. Available:
https://kurviger.de, Accessed on: Apr 30, 2020.

[18] GraphHopper, “Graphhopper routing engine,” 2020. [Online]. Available:
https://github.com/graphhopper/graphhopper, Accessed on: Feb 05, 2020.

[19] Rever, “Rever moto, inc.,” 2020. [Online]. Available: https://rever.co, Accessed
on: Apr 15, 2020.

[20] ScenicApp, “Scenic,” 2020. [Online]. Available: https://kurviger.de, Accessed
on: Apr 30, 2020.

[21] R. BELLMAN, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[22] W. Zeng and R. L. Church, “Finding shortest paths on real road networks: the
case for A*,” Apr. 2009.

[23] H. Mahmoud and N. Akkari, “Shortest path calculation: A comparative study
for location-based recommender system,” in 2016 World Symposium on Com-
puter Applications Research (WSCAR), pp. 1–5, March 2016.

[24] M. Srivastav, “Circumcircle and incircle of a triangle with its impact in devel-
opment of skill,” International Journal of Mathematical Archive ISSN 2229 –
5046, vol. Vol. - 6, No. - 6 (2015): June-2015:, pp. 69–75, 06 2015.

66

Bibliography

[25] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction hierar-
chies: Faster and simpler hierarchical routing in road networks,” in Experi-
mental Algorithms (C. C. McGeoch, ed.), (Berlin, Heidelberg), pp. 319–333,
Springer Berlin Heidelberg, 2008.

[26] M. Hadjieleftheriou, Y. Manolopoulos, Y. Theodoridis, and V. J. Tsotras, “R-
trees: A dynamic index structure for spatial searching,” in Encyclopedia of GIS
(S. Shekhar, H. Xiong, and X. Zhou, eds.), pp. 1805–1817, Cham: Springer
International Publishing, 2017.

[27] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”
ArXiv e-prints, 11 2015.

[28] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision, pp. 818–833, Springer,
2014.

[29] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: an overview and application in radiology,” Insights into Imaging,
vol. 9, no. 4, pp. 611–629, 2018.

[30] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
vol. abs/1609.04747, 2016.

[31] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Inter-
national Conference on Learning Representations, 2014.

[32] Y. Ollivier, “Riemannian metrics for neural networks,” CoRR,
vol. abs/1303.0818, 2013.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” CoRR, vol. abs/1512.03385, 2015.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[35] S. Kotsiantis, I. Zaharakis, and P. Pintelas, “Machine learning: A review of
classification and combining techniques,” Artificial Intelligence Review, vol. 26,
pp. 159–190, 11 2006.

[36] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” 2011. [Online].
Available: https://repository.upenn.edu/asc_papers/43, Accessed on: Jun 17,
2020.

[37] W. Foddy, Constructing Questions for Interviews and Questionnaires: Theory
and Practice in Social Research. Cambridge University Press, 1993.

[38] K. L. Manfreda, Z. Batagelj, and V. Vehovar, “Design of Web Survey Question-
naires: Three Basic Experiments,” Journal of Computer-Mediated Communi-
cation, vol. 7, 04 2002. JCMC731.

67

Bibliography

[39] J.-T. Wong, Y. Chung, and S.-H. Huang, “Determinants behind young mo-
torcyclists’ risky riding behavior,” Accident; analysis and prevention, vol. 42,
pp. 275–81, 01 2010.

[40] W. C. Schmidt, “World-wide web survey research: Benefits, potential problems,
and solutions,” Behavior Research Methods, Instruments, & Computers, vol. 29,
pp. 274–279, Jun 1997.

[41] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class
imbalance,” Journal of Big Data, vol. 6, no. 1, p. 27, 2019.

[42] R. A. Bauder and T. M. Khoshgoftaar, “The effects of varying class distribution
on learner behavior for medicare fraud detection with imbalanced big data,”
Health Information Science and Systems, vol. 6, no. 1, p. 9, 2018.

[43] Y. You, Z. Zhang, C. Hsieh, and J. Demmel, “100-epoch imagenet training with
alexnet in 24 minutes,” CoRR, vol. abs/1709.05011, 2017.

[44] B. Zhou, A. Khosla, À. Lapedriza, A. Torralba, and A. Oliva, “Places: An
image database for deep scene understanding,” CoRR, vol. abs/1610.02055,
2016.

[45] M. Hussain, J. Bird, and D. Faria, “A study on cnn transfer learning for image
classification,” in Annual UK Workshop on Computational Intelligence, 06 2018.

[46] S. Uchida, S. Ide, B. Iwana, and A. Zhu, “A further step to perfect accuracy
by training cnn with larger data,” in 2016 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 405–410, 10 2016.

[47] F. Neto, R. Torkar, R. Feldt, L. Gren, C. Furia, and Z. Huang, “Evolution
of statistical analysis in empirical software engineering research: Current state
and steps forward,” Journal of Systems and Software, vol. 156, 07 2019.

[48] Facebook Inc., “React js,” 2020. [Online]. Available: https://reactjs.org, Ac-
cessed on: Apr 20, 2020.

[49] Semantic Org, “Semantic ui,” 2020. [Online]. Available: https://react.semantic-
ui.com, Accessed on: Apr 30, 2020.

[50] Google, “Firebase,” 2020. [Online]. Available: https://firebase.google.com, Ac-
cessed on: Apr 20, 2020.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning li-
brary,” in Advances in Neural Information Processing Systems 32 (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.),
pp. 8024–8035, Curran Associates, Inc., 2019.

68

Bibliography

[52] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019.

[53] S. Raschka, “Model evaluation, model selection, and algorithm selection in
machine learning,” CoRR, vol. abs/1811.12808, 2018.

[54] OpenStreetMap, “osm2pgsql,” 2020. [Online]. Available:
https://github.com/openstreetmap/osm2pgsql, Accessed on: Jun 17, 2020.

[55] GraphHopper, “Edge-based contraction hierarchies,” 2020. [Online]. Available:
https://github.com/graphhopper/graphhopper/blob/master/docs/core/edge-
based-ch.md, Accessed on: Feb 26, 2020.

[56] GraphHopper, “Now flexible routing is at least 15 times faster,” 2017.
[Online]. Available: https://www.graphhopper.com/blog/2017/08/14/flexible-
routing-15-times-faster/, Accessed on: Feb 26, 2020.

[57] D. D. Clarke, P. Ward, C. Bartle, and W. Truman, “In-depth study of motor-
cycle accidents,” Road Safety Research Rep, vol. 54, 2004.

[58] V. Huth, F. Biral, Óscar Martín, and R. Lot, “Comparison of two warning
concepts of an intelligent curve warning system for motorcyclists in a simulator
study,” Accident Analysis Prevention, vol. 44, no. 1, pp. 118 – 125, 2012.
Safety and Mobility of Vulnerable Road Usears: Pedestrians, Bicyclists, and
Motorcyclists.

69

	List of Figures
	Introduction
	Background
	Related work
	Commercial alternatives on the market

	Aim
	Scope

	Theory
	OpenStreetMap graph structure
	Routing in graphs
	A*

	Haversine distance
	Determining road curvature
	Bee-line distance to actual distance ratio
	Circumscribed circles

	Contraction Hierarchies
	Nearby point search (R-Tree)
	Scenery
	Machine learning for scenery classification
	Convolutional Neural Networks
	ResNet-50
	ImageNet

	Transfer learning
	Inter-rater reliability

	Methods
	User survey
	Constructing the survey
	Analyzing the results

	Scenery classification
	Selecting coordinates for scenery image sampling
	Collecting additional data for under-represented categories
	Direction and field of view
	Classifying imagery
	Obtaining and categorizing training data
	Training the network

	Incorporating scenery and curvature data
	Adding curvature to the OSM data
	Adding scenery to the OSM data

	Routing
	Choice of routing engine
	Route weighting function
	Routing profiles

	Safety aspects
	Curvature warnings
	Nearby road works

	Results
	Scenery image classification
	Agreement between the labellers
	Size of training set

	Routing
	Comparing different level of curvature
	Comparison to other routing services
	Calimoto comparison
	Kurviger curvature comparison

	User evaluation of routes
	User evaluation of warnings

	Discussion
	Image labelling
	Limitations
	Geographical area
	Scenery classification
	Curve warnings algorithm

	Conclusion
	Future work
	Bibliography

